Independent vector analysis (IVA) for group fMRI processing of subcortical area
نویسندگان
چکیده
During functional MRI (fMRI) studies, blood oxygenation-level dependent (BOLD) signal associated with neuronal activity acquired from multiple individuals are subject to the derivation of group-averaged brain activation patterns. Unlike other cortical areas, subcortical areas such as the thalamus and basal ganglia often manifest smaller, biphasic BOLD signal that are aberrant from signals originating from cortices. Independent component analysis (ICA) can offer session/individual specific brain activation maps without a priori assumptions regarding the timing or pattern of the signal responses. The small activation loci within the subcortical areas are sparsely distributed among the subjects, and a conventional group processing method based on the general linear model (GLM) or ICA may fail to characterize the activation loci. In this paper, we present an independent vector analysis (IVA) to overcome these limitations by offering an analysis of additional dependent components (compared to the ICA-based method) that are assigned for use in the automated grouping of dependent (i.e. similar) activation patterns across subjects. The proposed IVA algorithm was applied to simulated data, and its utility was confirmed from real fMRI data employing a trial-based hand motor task. A GLM and the group ICA of the fMRI toolbox (GIFT) were also applied for comparison. From the analysis of activation patterns within subcortical areas, in which the hemodynamic responses (HRs) often deviate from a canonical, model-driven HR, IVA detected task-related activation loci that were not detected through GLM and GIFT. IVA may offer a unique advantage for inferring group activation originating from subcortical areas.
منابع مشابه
Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performance limits of GICA and IVA has not been investigated. Recent interest in resting state fMRI data w...
متن کاملComparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guided independent component analysis (GIG-ICA) as a variant of GICA has been proposed to improve the ...
متن کاملQuantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis☆
The assessment of neuroplasticity after stroke through functional magnetic resonance imaging (fMRI) analysis is a developing field where the objective is to better understand the neural process of recovery and to better target rehabilitation interventions. The challenge in this population stems from the large amount of individual spatial variability and the need to summarize entire brain maps b...
متن کاملLocal Linear Discriminant Analysis (LLDA) for group and region of interest (ROI)-based fMRI analysis
A post-processing method for group discriminant analysis of fMRI is proposed. It assumes that the fMRI data have been pre-processed and analyzed so that each voxel is given a statistic specifying task-related activation(s), and that individually specific regions of interest (ROIs) have been drawn for each subject. The method then utilizes Local Linear Discriminant Analysis (LLDA) to jointly opt...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of imaging systems and technology
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2008